当前位置:首页 > 实验室近期学术活动

组合优化大师Jack Edmonds访问实验室

副标题:

时间:2017-05-09  来源:文本大小:【 |  | 】  【打印

        组合优化大师Jack Edmonds访问2017518日访问管理决策与信息系统重点实验室,有用的幻想为题,讲述PNPcoNP的历史渊源.

         

        有用的幻想: NP ≠ NP ∩ coNP = P

        Jack Edmonds

        摘要: 我从1961年到1965 年研究课题NP  P 的关系,而在1966 年做出猜想 

        NP ≠ P  NP ≠ NP ∩ coNP = P

    旅行推销员问题是NP 的表述: TSP(G,T) = [G 有条比其它周游T 便宜的周游y]

    我于1961兴奋不已地去证TSP(G,T) coNP,想法是找到一组不等式的NP描述,其解集是G 中周游的所有0,1 关联向量的凸包。 

    但我失败了,因此在1966 年我就猜想TSP 不属于 P不过这些想法却表明多种其它问题属于 P,包括中国邮递员问题。

    我还将解释当前的密码学怎样挑战 "NP ∩ coNP = P"

 

        Useful Fantasies, NP ≠ NP ∩ coNP = P

        Jack Edmonds

        Abstract: I spent from 1961 to 1965 on the subject NP versus P, and in 1966 made the conjectures, NP ≠ P and NP ≠ NP ∩ coNP = P.

        The 'Traveling Salesman Problem' is the NP predicate:

        TSP(G,T) = [there is a y, which is a tour in G cheaper than tour T in G].  

        I became excited in 1961 to show that TSP(G,T) is coNP by finding an NP description of a set of inequalities whose solution set is the convex hull of all the 0,1 incidence vectors of tours in G. 

        I failed, and so in 1966 I conjectured that TSP is not in P.

        The ideas did however show various other problems to be in P including the "Chinese Postman's Problem".

        I will also explain how current cryptography challenges "NP ∩ coNP = P".

 

        http://www.math.uiuc.edu/documenta/vol-ismp/34_pulleyblank-william.pdf

        https://www.zib.de/groetschel/pubnew/blossom.pdf

        http://www.mathopt.org/Optima-Issues/optima97.pdfhttps://web.stanford.edu/~alroth/papers/kidneys.JET.2005.pdf

附件
相关文档